Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be2+ as co-dopant

نویسندگان

  • Alagappan Annamalai
  • Hyun Hwi Lee
  • Sun Hee Choi
  • Su Yong Lee
  • Eduardo Gracia-Espino
  • Arunprabaharan Subramanian
  • Jaedeuk Park
  • Ki-jeong Kong
  • Jum Suk Jang
چکیده

For ex-situ co-doping methods, sintering at high temperatures enables rapid diffusion of Sn(4+) and Be(2+) dopants into hematite (α-Fe2O3) lattices, without altering the nanorod morphology or damaging their crystallinity. Sn/Be co-doping results in a remarkable enhancement in photocurrent (1.7 mA/cm(2)) compared to pristine α-Fe2O3 (0.7 mA/cm(2)), and Sn(4+) mono-doped α-Fe2O3 photoanodes (1.0 mA/cm(2)). From first-principles calculations, we found that Sn(4+) doping induced a shallow donor level below the conduction band minimum, which does not contribute to increase electrical conductivity and photocurrent because of its localized nature. Additionally, Sn(4+)-doping induce local micro-strain and a decreased Fe-O bond ordering. When Be(2+) was co-doped with Sn(4+)-doped α-Fe2O3 photoanodes, the conduction band recovered its original state, without localized impurities peaks, also a reduction in micro-strain and increased Fe-O bond ordering is observed. Also the sequence in which the ex-situ co-doping is carried out is very crucial, as Be/Sn co-doping sequence induces many under-coordinated O atoms resulting in a higher micro-strain and lower charge separation efficiency resulting undesired electron recombination. Here, we perform a detailed systematic characterization using XRD, FESEM, XPS and comprehensive electrochemical and photoelectrochemical studies, along with sophisticated synchrotron diffraction studies and extended X-ray absorption fine structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes.

Numerous studies have shown that the performance of hematite photoanodes for light-driven water splitting is improved substantially by doping with various metals, including tin. Although the enhanced performance has commonly been attributed to bulk effects such as increased conductivity, recent studies have noted an impact of doping on the efficiency of the interfacial transfer of holes involve...

متن کامل

Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.

Ta-doped hematite (α-Fe2O3) nanorod array films were successfully prepared on fluorine-doped tin dioxide (FTO) coated glass substrates via a facile solution growth process with TaCl5 as a Ta doping precursor. Under 1 sun illumination and at an applied potential of 1.0 V vs. Ag/AgCl, the Ta-doped α-Fe2O3 photoanode with optimized dopant concentration showed a photocurrent density as high as 0.53...

متن کامل

Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting

Given the narrow band gap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for water splitting over hematite (α-Fe2O3) photoanodes. In this study, a facile and inexpensive method was demonstrated to develop core/shell structured α-Fe2O3 nanorod arrays. ...

متن کامل

A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation.

We report a mechanistic study of the catalytic effect of Ni(OH)2 on hematite nanowires for photoelectrochemical water oxidation. Ni compounds have been shown to be good catalysts for electrochemical and photoelectrochemical water oxidation. While we also observed improved photocurrents for Ni-catalyst decorated hematite photoanodes, we found that the photocurrents decay rapidly, indicating the ...

متن کامل

Theoretical Understanding of Enhanced Photoelectrochemical Catalytic Activity of Sn-Doped Hematite: Anisotropic Catalysis and Effects of Morin Transition and Sn Doping

To investigate the influence of the Morin transition on the photoelectrochemical (PEC) activity of hematite, electronic properties in different magnetic phases were studied on the basis of the first-principles calculations within the GGA+U approximation. The results show that the effective electron mass in the (0001) plane changes remarkably due to the spin−flop transition, while the effective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016